
Journal of Sound and <ibration (2001) 240(1), 59}72
doi:10.1006/jsvi.2000.3199, available online at http://www.idealibrary.com on
GEOMETRICALLY NON-LINEAR DYNAMIC MODEL
OF A ROTATING FLEXIBLE ARM

B. O. AL-BEDOOR AND M. N. HAMDAN

Mechanical Engineering Department, King Fahd ;niversity of Petroleum and Minerals,
KF;PM Box 841, Dhahran 31261, Saudi Arabia. E-mail: bobedoor@kfupm.edu.sa

(Received 3 December 1999, and in ,nal form 14 June 2000)

In this paper, a mathematical model for a rotating #exible arm undergoing large planar
#exural deformations is developed. The position of a typical material point along the span of
the arm is described by using the inertial reference frame via a transformation matrix from
the body co-ordinate system which is attached to the root of the rotating arm. The condition
of inextensibility is employed to relate the axial and transverse de#ections of the material
point. The position and velocity vectors obtained, after imposing the inextensibility
conditions, are used in the kinetic energy expression while the exact curvature is used in the
potential energy. The Lagrangian dynamics in conjunction with the assumed modes method
is utilized to derive directly the equivalent temporal equations of motion. The resulting
non-linear model is discussed, simulated and the result of simulation are presented and
compared to those obtained from the linear theory for di!erent arm parameters.
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1. INTRODUCTION

The use of light-weight structural elements in space applications as well as in robotic
manipulations under the requirement of precise positioning has increased interest in
modelling the #exibility of such structures' and its e!ect on the overall rigid/#exible body
dynamics. Based on such structures inherent lateral #exibility and on the fact of axial
rigidity, the problem of the axial displacement due to bending deformations has been
identi"ed as a major contributor to what is known as geometric sti!ening. Geometric
sti!ening, due to axial shortening, was shown to have a very important role on the stability
of such rotating #exible structures and on their positioning control. It became evident that
a model of a rotating long slender #exible arm that takes care of the e!ect of axial
displacement, due to bending deformations, based on physically justi"ed geometrical
considerations is desirable. This model should allow large #exible rotation of the arm, adopt
the condition of inextensibility and account for #exible}rigid modes coupling.

The e!ect of rotation on the natural frequencies and mode shapes of a rotating beam was
reported earlier by Shilhansi [1] and Prudli [2]. These studies have shown that the rotation
speed strengthens the beam and result in higher natural frequencies. Likins [3] reported
a study on the mathematical modelling of spinning elastic bodies. In the same direction,
Kaza and Kavternik [4] reported results of a study on the non-linear #ap-lag-axial
equations of a rotating beam. They addressed the problem of axial rigidity and the
shortening due to transverse de#ection. Reference [4] summarized the four methods for
accounting the beam axial rigidity as the approach for considering the Green axial strain for
the axial deformation, using the inertial e!ect, arti"cially, in the kinetic energy or the
potential energy or both. Stephen and Wang [5] studied the e!ect of uniform high-speed
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rotation on the stretching and bending of a rotating beam. They accounted for the beam
rotation in terms of tensile force that produced axial stress on the beam. They accounted for
the beam rotation in terms of tensile force that produced axial stress on the beam. In the
aforementioned studies, the e!ect of rotation was taken as kinematic variable in the form of
angular velocity and angular acceleration to be given to the elastic equations which in turn
are solved for the natural frequencies and mode shapes. Kane et al. [6] studied the dynamic
behaviour of a cantilever beam that is attached to rigid base which is performing speci"ed
motion of rotation and translation. In their work the elastic degrees of freedom included
beam axial extension, bending in two planes, torsion, shear displacement and wrapping.
The model is a general three-dimensional elastic beam model; however, the two-way
coupling between the rigid-body motion and elastic de#ections was not accounted for as
only speci"ed rigid-body motions were considered.

The multibody dynamic approach, in which the rigid motion and #exible deformation are
modelled in their coupled form, has attracted many researchers. Baruh and Tadikonda [7]
reported some issues on the dynamics and control of #exible robot manipulators. They
addressed the problem of axial shortening due to bending deformations by considering the
shortening in their kinetic energy expression. Their results have shown that the #exibility of
the rotating arm has changed the desired "nal rigid-body position. Tadikonda and Chang
[8] reported the e!ect of end load, due to chain connections on the geometric sti!ening.
Yigit et al. [9] studied the dynamics of a radially rotating beam with impact. They modelled
the rigid-body motion and the beam elastic co-ordinates using a partial di!erential
equation and Galerkin's method of approximation. The e!ect of beam axial shortening due
to bending deformation and the resulting beam sti!ening was considered in their equations.
However, the model showed linear inertial coupling between the beam rigid-body rotation
and its elastic de#ections and the e!ects of shortening appeared as function of square of
beam rigid-body rotating speed in the sti!ness term. Pan et al. [10] reported a dynamic
model and simulation results of a #exible robot arm with prismatic joint. They accounted
for the e!ect of axial shortening using a virtual work term added to the elastic potential
energy. El-Absy and Shabana [11] studied the geometric sti!ness for a rotating beam using
di!erent approaches. They introduced the e!ect of longitudinal deformation due to
bending, in the equations of motion, using the principle of virtual work. Recently,
Al-Bedoor [12] studied the e!ects of shaft torsional #exibility on the dynamics of rotating
blades. The e!ect of axial shortening was accounted for by using the virtual work in the
form of added potential energy due to the centrifugal forces. Numerical simulations have
shown that the #exibility and the sti!ening e!ect contribute to the rigid-body inertia by
quadratic terms.

To this end, one can summarize that the available dynamic models for the rotating beam
that included the e!ect of axial shortening can be classi"ed into two groups. One group was
concerned with the e!ect of uniform spinning speed on the natural frequencies and mode
shapes. The second group is concerned with the overall rigid-body and #exible system
motions. With regard to accounting for the axial shortening due to bending deformations,
the published work can also be classi"ed into two main categories: one category that
considered the e!ect in the form of axial potential energy virtual work and the other that
considered the axial shortening, which is found from the binomial expansion, in the kinetic
energy. A consistent approach that accounts for the beam axial shortening and its
associated non-linear e!ects that develop by utilizing the beam in-extensibility condition
[13, 14] as a constraint for relating axial and transverse elastic position of a typical material
point is very important.

This work presents a mathematical model and simulation results for a rotating #exible
slender arm. The multibody dynamic approach is followed in developing the model through
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attaching body co-ordinate system to the hub at the root of the arm. The position vector of
a typical material point is used in deriving the kinetic energy expression which includes the
rigid-body motion, the arm transverse de#ection and its associated axial shortening. The
geometrically exact curvature is employed in expressing the arm elastic potential energy.
The system Lagrangian in conjunction with the assumed modes method and after imposing
the beam inextensibility constraint is used to develop the non-linear system of equations of
motion that constitute the rigid-body motion and the arm transverse de#ection modal
co-ordinates. The obtained non-linear and coupled model is discussed, simulated and the
results are presented and compared with those obtained from the linear theory for di!erent
arm/hub and motion parameters.

2. THE ELASTODYNAMIC MODEL

2.1. SYSTEM DESCRIPTION AND ASSUMPTIONS

Figure 1 shows a schematic of the beam under consideration. X>Z denotes the inertial
reference frame that is "xed in space with the origin O at the centre of the hub, while the xyz
is the system of orthogonal axes rotating with the hub with its origin "xed to the root of the
beam and the x-axis is oriented along the neutral axis of the beam in the unde#ected
con"guration. The hub is assumed to be rigid with radius R

H
and rotating about the global

z-axis. The beam is assumed to be initially straight, cantilevered at the based having uniform
cross-section A, #exural rigidity EI, constant length l and mass per unit length o. The
thickness of the beam is assumed to be small compared to the beam length so that the e!ects
of shear deformations and rotary inertia can be neglected. The beam motion is assumed to
be con"ned to the x}y plane (i.e., only in-plane #exural motion is allowed). Furthermore, it
is assumed that the peak amplitude in this planar #exural vibrations may reach relatively
large values (can be of the order of the beam length for the lower modes), but the slope of the
elastica may not have tangents perpendicular to the neutral axis; also the beam is assumed
to be conservative. The e!ect of shortening due to beam transverse deformation, determined
by using the inextensibility condition [13, 14], and its time derivative is used to eliminate the
dependence of the beam Lagrangian on the axial displacement and the axial velocity. In the
following sections, the governing temporal equations of motion are formulated via
a combined Lagrangian-assumed mode method.
Figure 1. Schematic of the rotating inextensible #exible arm.
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2.2. THE KINETIC ENERGY EXPRESSION

To develop the kinetic energy expression for the rotating arm}hub system, the deformed
con"guration of the arm, shown in Figure 1, is used. The global position vector of a material
point P, on the arm, can be written as

R
P
"R

H
#[A(h)]r

P
, (1)

where r
P

is the position vector of point P in the hub co-ordinate system xy, [A(h)] is the
rotational transformation matrix from the hub co-ordinate system to the inertial reference
frame, X>, and R

H
is the position vector of the origin of the hub co-ordinate system xy in

the inertial reference frame, i.e.,

R
H
"R

H
cos hI#R

H
sin hJ. (2)

The position vector of the material point P in the xy co-ordinate system can be written in
the form

r
P
"(s!u (s, t)) i#v (s, t)j, (3)

where s is the unde#ected position, u (s, t) is the axial shortening due to bending deformation
and v (s, t) is the transverse de#ection of the material point p measured with respect to the
hub co-ordinate system, xy, which has the unit vectors i and j. The rotational
transformation matrix [A(h)] can be represented as

[A(h)]"C
cos h
sin h

!sin h
cos hD , (4)

where h represents the arm rigid-body rotation.
The velocity vector of the material point P in the inertial reference frame can be obtained

by di!erentiating equation (1) as follows:

RQ
P
"RQ

H
#[A(h)]rR

P
#hQ [Ah(h)]r

P
, (5)

where [Ah] is the derivative [dA/dh].
Upon substituting for R

H
, [Ah], r

P
and rR

P
into equation (5), the velocity vector of the

material point P in the inertial reference frame can be represented in the form

RQ
P
"G

!a sin h#b cos h
b cos h#a sin h H , (6)

where

a"hQ (R
H
#s!u)#vR , b"!uR (s, t)!hQ v. (7)

The kinetic energy of the beam can be found from

;
B
"1

2 P
l

0

oRQ T{
P
)RQ

P
ds, (8)

where o is the beam mass per unit length and l is the beam length.
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Substituting equation (6) into equation (8) yields the beam kinetic energy expression in
the form

;
B
"1

2
o P

l

0
C
R2

H
hQ 2#(s!u)2hQ 2#vR 2#2R

H
(s!u)hQ 2#2R

H
vR hQ

#2(s!u)vR hQ #uR 2#v2hQ 2#2vuR hQ D ds . (9)

The kinetic energy of the hub which is assumed to be a rigid uniform disk with radius
R

H
and mass m

H
and rotating at angular velocity hQ , can be written in the form

;
H
"1

4
m

H
R2

H
hQ 2. (10)

Now, the total kinetic energy expression of the system can be written as

;";
H
#;

B
. (11)

2.2. POTENTIAL ENERGY EXPRESSION

The system potential energy is constituted of the beam elastic strain energy. The arm is
assumed to be rotating in the horizontal plane, which results in no gravitational potential
energy. The elastic beam strain energy with #exural rigidity EI(x) is given by

<
B
"1

2 P
l

0

EI(s)K2 ds, (12)

where K is the curvature of the beam centreline at point s, which will be evaluated in the
following sections based on the inextensibility condition.

2.3. THE INEXTENSIBILITY CONDITION

For the present two-dimensional beam problem (see Figure 2), the inextensibility
condition dictates that total axial shortening u(s, t) is given by [14],

ju(m, t)"m!P
m

0

cos/ (g, t) dg, (13)
Figure 2. The deformed beam con"guration.
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where m"s/l and j"1/l. Upon noting that cos/"J1!sin2/ , sin/"dv/ds and
expanding the term [1!(jv@2)]1@2 in a power series, assuming that (jv@ )2@1, and retaining
the terms up to the fourth order, the axial position of the material point can be represented
as

u"1
2 P

m

0

[jv@2#1
4
j3v@4] dg, (14)

where the prime is the derivative with respect to the dimensionless length, m. Di!erentiating
equation (14) with respect to time yields

u"1
2

d

dt CP
m

0

[jv@2#1
4
j3v@4] dgD . (15)

In order to express the exact curvature in terms of the transverse de#ection v only, the
analysis presented in reference [14] is adopted. Accordingly, one notes that the curvature is

K"/@, (16)

where

sin/"jv@. (17)

Di!erentiating equation (17) and noting, as before, that cos/"J1!sin2/, sin /"dv/ds
and expanding the term [1!(jv@2)]1@2 in a power series, assuming that (jv@)2@1, and
retaining the terms up to the fourth order leads to

K2"j4vA2#j6v@2vA2. (18)

Upon substituting equation (14) for the axial position and its time derivative, equation (15)
and the curvature equation (18) into the kinetic and potential and energy expressions, the
Lagrangian of the system is obtained as

¸"
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#
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m

0
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4
j3v@4) dgD vR hQ #v2hQ 2#1

4CAP
m
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jv@2dgB
'

D
2

#CP
m

0
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4 BdgD

*
vhQ !b2 [vA2#(jv@vA)2] H dm,

(19)

where m
B
is the mass of the beam, I

H
"1

2
m

H
R2

H
is the moment of inertia of the rigid hub, and

b2"EIj4/o is a dimensionless frequency parameter of the beam.
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In addition to the Lagrangian, the virtual work done by the external torque applied at the
hub can be represented in the form

d="¹dh. (20)

2.4. THE ASSUMED MODES METHOD (AMM)

The assumed modes method is used in discretizing the beam elastic deformation, v(s, t)
used in the Lagrangian expression relative to the hub co-ordinate system, as follows:

v(s, t)"
N
+
i/1

/
i
(s)q

i
(t), (21)

where N is the number of modes, q
i
is the vector of modal co-ordinates, which is time

dependent, and /
i
is the vector of the assumed modes.

Upon substituting the assumed modes approximation (AMM) for the beam deformation,
equation (21), the Lagrangian expression becomes
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where C
0
"C2 (1#1

2
k)#(C/2)#(1

3
) is a dimensionless inertia coe$cient with C"R

H
/l as

the ratio of the hub radius to the beam length and k"m
H
/m

B
as the mass ratio of the hub to

the beam and the coe$cients b
i
are as follows:
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2.5. THE EQUATIONS OF MOTION

By applying the Euler}Lagrange equation to the system Lagrangian equation (22), the
system equations of motion are obtained as
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where i"1, n" is the ith elastic mode, u2"b
7
b2 is the linear natural frequency of the

non-rotating beam.
Equations (24) and (25) represent the equations of motion of an inextensible beam which

is rotating around its hub centre. The system is a two-coupled non-linear di!erential
equations for the system degrees of freedom h as the rigid-body rotation and q

i
as the beam

ith modal degree of freedom. In these equations the terms qR 2q and q2qK are inertial
non-linearities due to the kinetic energy of the axial motion which arise as a result of using
the inextensibility condition. In equation (25) the cubic term, q3, is a static hardening
non-linearity due to the potential energy and arise as a result of using non-linear curvature.
These non-linear terms have appeared in the present model due to adopting the
inextensibility condition and did not appear in the reported models that used the arti"cial
virtual work to account for the axial shortening: references [7, 9, 11, 12]. The other
non-linear terms in these equations are the same as one obtained when using the linear
beam, i.e., linear curvature and assuming uncoupled axial and transverse beam motion. In
the next section, the system of equations is simulated numerically and the results for the
linear and non-linear approaches for accounting for the axial shortening are compared and
discussed.

3. NUMERICAL SIMULATION

The computational process started with evaluating the coe$cients, equations (23), for the
cantilever beam mode shapes. The Gauss-quadrature 16-point integration scheme was
used. The system of non-linear second order equations, equations (24) and (25), is simulated
by using a multistep variable order prediction}corrector algorithm. The dimension and
material properties of the arm}hub system are given in Table 1.

The inverse dynamic procedure is used to design and open loop positioning torque which
accounts for the rigid-body inertia that is known. The torque pro"le that is employed to
rotate the system, with 1 m long #exible arm, an angle of n/6 in 2 s is shown in Figure 3. The
resulting arm angular position is shown in Figure 4, wherein the angular position of the
linear under the e!ect of neglecting inertia coupling between the rigid-rotation and the
#exible arm motion is compared to the position when the linear and the non-linear models
are simulated. It is shown that the linear and non-linear models have given deviation from
the target angular position, which is obtained by the rigid-body model. This deviation can
be referred mainly to the inertia coupling between the rigid body and the elastic de#ection
and not to the non-linearity that exists due to the geometrical shortening. The hub angular
velocity is shown in Figure 5 for the rigid body, linear and non-linear models respectively.
The elastic linear and non-linear models show that the system has reached an angular
velocity greater than that of the equivalent uncoupled model. This indicates that some
TABLE 1

Arm-hub data

Property Value

Arm length l 1)0 m
Arm mass per unit length, o 4)015 kg/m
Arm #exural rigidity, EI 756)0 N/m2
Hub radius, R

D
0)2 m

Basic hub mass m
H

50 kg



Figure 3. Motor torque to rotate the 1 m arm, an angle n/6 in 2 s.

Figure 4. Hub angular position: (} } } }), rigid body; (} ) } ) }), #exible with linear model; and (**), #exible with
non-linear model.
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energy, which was originally fed into the elastic mode, is directed to the rigid-body motion
through the inertia coupling. Figure 6 shows the tip de#ection of the arm measured with
respect to the hub co-ordinate system. The tip de#ects when the inertia coupling terms are
higher than those obtained from the linear and the non-linear models. This shows that some



Figure 5. Hub angular velocity: (} } } }), rigid body; (} ) } )}), #exible with linear model; and (**), #exible with
non-linear model.

Figure 6. Tip de#ection: (} } } }), rigid-body-#exible coupling ignored; (} ) } ) }), coupled system with linear
model; and (**), coupled system with non-linear model.
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of the energy is transferred from elastic mode to the rigid-body mode and causes the system
to move further from its design point. To further explore the e!ect of beam length, the beam
with a length of 3 m, while all other parameters remain the same, is simulated. The hub



Figure 7. Motor Torque to rotate the 3 m arm, an angle n/6 in 2 s.

Figure 8. Hub angular position when the arm is 3m long: (} } } }), linear model; and (**), non-linear model.
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torque designed to rotate the 3 m beam}hub system to an angular position of n/6 in 2 s is
shown in Figure 7. The angular position of the system using the linear and non-linear
models is shown in Figure 8. It is shown that the "nal position is oscillatory for both the
linear and the non-linear models. The frequency of oscillations is a!ected by the beam



Figure 9. Hub angular velocity when the arm is 3 m long: (} } }}), linear model; and (**), non-linear model.

Figure 10. Tip de#ection of the 3 m long arm: (} } } }), linear model; and (**), non-linear model.
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natural frequency, but tuned due to the non-linearity and resulting in the frequency
amplitude relation. Moreover, the non-linear system has described that the end position is
moving back from that of the linear system position but towards the rigid-body position
response but after some delay. The hub angular velocity, shown in Figure 9, shows that both
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the linear and the non-linear models angular velocity exhibit oscillations, which indicates
that the rigid-body system energy is a!ected markedly by the elastic de#ections. The beam
tip de#ections obtained from the linear and the non-linear models are shown in Figure 10.
The linear model has shown slightly less de#ection and higher frequency.

4. CONCLUSIONS

A non-linear dynamic model for a rotating #exible arm is developed in this study. The
position and velocity vectors of a deformed material point were described using the
inextensible beam theory, which was also utilized in the exact curvature. The equations of
motion were derived by using Lagrangian dynamics in conjunction with the assumed
modes method for discretizing the beam elastic de#ection. Due to the geometrically exact
nature of the described position and velocity vectors as well as the exact curvature, the
developed equations are suitable for large de#ection of the rotating arm, in contrast to the
previously reported models. The equations obtained are coupled and non-linear ordinary
di!erential ones that captured the e!ect of geometrical sti!ening without imposing any
conditions other than the inextensibility geometrical constraint. The coupled equations of
motion showed more non-linear inertial sti!ening and softening terms that would not
appear without adopting the geometrical inextensibility constraint. The model is simulated
and the results are compared with those obtained by using the linear theory and the
simulations of the model, which ignores the inertia coupling. The numerical results showed
that the added inertia e!ect comes through the inertia coupling terms and not due to the
sti!ening e!ect as was previously reported. The non-linear model simulations showed more
realistic results in the positioning accuracy than the linear model results that was obtained
due to the consistency in developing the model, in particular when accounting for the axial
shortening through imposing the inextensibility condition. More studies on the rotating
#exible arm dynamics, control and stability using the reported model are recommended.
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